Hypocycloid・・・Trochoid

Parametric representation

x = ( a - b ) cost + c cos (( a - b )/ b ) t
y = ( a - b ) sint - c sin (( a - b )/ b ) t

When one circle rolls (without slipping) on the inside of another fixed circle,a point inside or outside the moving circle describes a curve ,called Trochoid.
a:the radius of fixed circle, b:the radius of moving circle, c:distance of a point from the center of movingcircle.

 ●A point outside the moving circle (if b < c)


Animation

 ●A point inside the moving circle (if b > c)


Animation2

※ if b=c,the locus is Cycloid or Deltoid orAstroid.

back