負の数の表現

数学では: +101 → -101

コンピュータでは: +101 → -101?

〇符号付き2進数:

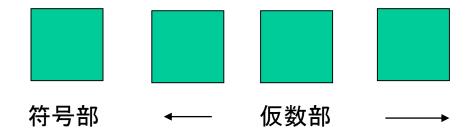
Oと1の数字の組み合わせによって、プラスの数値に加えてマイナスの数値も表現する方法。

コンピュータ上で負の数を表現する3つの方法

- 絶対値に符号をつける表現・・・符号ビット+絶対値(仮数部)
- 1の補数を利用する表現
- 2の補数を利用する表現

負の数の表現 絶対値に符号をつける表現・・・符号部+絶対値(仮数部)

4ビットの場合を例に(先頭の1ビットを符号部,残り3ビットを仮数部)



符号部: $+ \Rightarrow 0$,

符号部: $- \rightarrow 1$

とすると、

$$7_{10} \rightarrow 0111_2$$
, $-7_{10} \rightarrow 1111_2$

自然拡張になっている。しかし!これには難点がある。

4ビットの場合 符号なし2進数と符号付き2進数

2進数	符号なし	符号付き		
		絶対値	1の補数	2の補数
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	0	-1

2の補数の方が無駄がない

符号付き2進数とは

〇符号付き2進数:

Oと1の数字の組み合わせによって、プラスの数値に加えてマイナスの数値も表現する方法。最上位ビットが1の時にマイナスとする。

例:4ビットの場合(2の補数の場合)

1111 符号なし→15 符号付き→ -1 (←計算は後で)

○表現範囲(4ビットで2の補数の場合)

符号なし2進数 $\rightarrow 0$ ~15 符号付き2進数 $\rightarrow -8$ ~7(\leftarrow 後で説明)

2の補数とは(考え方)

定義:補数

N進法において、自然数 a を表現するのに必要な最小の桁数を nとしたとき、

Nⁿ - a を 「N 進法における a に対する(N の補数)」

 N^n-a-1 を「N 進法におけるaに対する(N-1)の補数)」

という。

例: N=10 のとき、自然数81の10の補数: $10^2-81=19$. (因みに81+19=100)

例:N=2のとき,

自然数 101_2 (= 5_{10})の2の補数: 2^3_{10} - 5_{10} = 3_{10} (= 011_2) (因みに101+011=1000)

補数の考え方をどのように負の数の表示に利用するのか。 この考え方はコンピュータの固定長整数型で負の数を表現することに適している。 なぜだろうか?

2の補数の考え方を負の数の表現に用いる

2進数での負の数の表現(2の補数を利用)・・・固定長による表現(4ビットを例に)

例: -5を2進数で表す(2の補数で表す4ビットの2進数)。

$$5_{10}$$
= 101_2 = 0101_2 として
$$0101_2$$
+ _____ = 0 (= 0000) となるものが求めるもの。

ここで01012の2の補数の定義より2410-510=1110=1011(2)

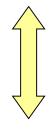
実際には0101₂+1011₂=10000₂ ← 先頭ビットを無視

(参考)補数の考え方をどのように負数の表示に利用するのか。

負の数の定義(例:5) 5+X=0をみたすXを5のマイナスと定義し、-5と表す (中学数学)

2の補数で負の数を求める計算便法(4ビットの例)

• $5_{10} = 0101_2$



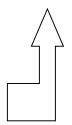
• $-5_{10} = 1011_2$

0101 1010 反転(0⇔1) 1011 (1を加える)

確かに

• 5+(-5)=0101+1011=10000

4ビット計算では最高位は無視



符号付き2進数と符号なし2進数(8ビットの例)

2進数	符号なし2進数	符号付き2進数
00000000	0	0
00000001	1	1
00000010	2	2
00000011	3	3
01111101	125	125
01111110	126	126
01111111	127	127
1 0000000	128	-1 28
1 0000001	129	-127
1 000001 0	130	-126
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		
		elele
11111101	253	-3
11111110	254	-2
11111111	255	-1

練習問題

問1:次の4ビットの2進数に対する2の補数をもとめなさい。

(1) 1011 (2) 0110

(1)0101 (2)1010

問2:-25を2の補数で表す符号付き6ビットの2進数で表しなさい。

100111

問3:補数の練習問題を解こう